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Abstract

A unique characteristic of marketing data sets is the logical consistency requirement in market share models that
market shares are bounded by 0 and 1, and they sum to unity. To take account of this logical consistency
requirement, we propose to test for unit roots in individual market share series within the context of a market share
attraction (MCI) framework. Our paper offers new contributions in testing for unit roots in market shares. First, a
novel feature of our paper is that we propose a new unit root testing methodology designed to deal with the logical
consistency requirement in market share models within the context of a market share attraction (MCI) framework.
A second novel component of our paper is that we demonstrate how one could use the Johansen (1995) test to
identify unit roots. This is implemented using Eviews software. The Johansen test is a system-based test rather
than a single equation test; it is more appropriate given the dependencies in the market share relationships. Finally,
we demonstrate using simulations that our procedure works well and improves substantially on the univariate
Dickey-Fuller procedure. Accordingly, our procedure leads to better unit root inference than the univariate
Dickey-Fuller method; the latter is not that reliable when dealing with market shares. We conclude the paper with
suggestions for future research.
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1. Introduction

Over the past few years, there has been a significant increase in the research literature on
the topic of long-run effects of marketing activity on market shares and sales (Dekimpe,
Hanssens and Silva-Risso 1999; Bronnenberg, Mahajan and Vanhonacker 2000; Franses,
Kloek and Lucas 1999; Srinivasan and Bass 2000). The interested reader is referred to
Dekimpe and Hanssens (2000) for an excellent review of recent time series papers in
marketing. In order to analyze the persistence of marketing efforts on market shares, a
necessary first step is to examine whether the market share time series are stationary or
evolving, see for example, Dekimpe and Hanssens (1995), Nijs et al. (2001) and Pauwels
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et al. (2001). For instance, if shares are mean-reverting, marketing actions only have a
temporary effect on shares. On the other hand, if they are evolving, marketing actions
could have a long-term effect on shares (Srinivasan, Popkowski Leszczyc and Bass 2000).
One approach to investigating stationarity versus evolution in market shares amounts to
testing for the presence of unit roots in market shares. The interested reader is referred to
Phillips and Xiao (1998) and Maddala and Kim (1998) for lucid surveys on unit roots in
time series.

A unique characteristic of marketing data sets is the logical consistency requirement in
market share models that market shares are bounded by 0 and 1, and they sum to unity.
This logical consistency requirement is likely to have an impact on the statistical
distinction between stationarity and evolution in market shares, as the time series
properties of market shares are closely related. Hence, it is important to take it into
account if one is interested in studying all the brands in a product category. A useful
modeling approach, which allows for these features, is the market share attraction model
(or MCI model), see for example Cooper and Nakanishi (1988). In this paper, we
propose a new unit root testing methodology for individual market shares within this
MCI framework and provide empirical applications using scanner-based data sets for two
frequently purchased consumer product categories. Our paper offers new contributions in
testing for unit roots in market shares. First, a novel feature of our paper is that we
propose a new unit root testing methodology designed to deal with a unique character-
istic of marketing data sets, namely the logical consistency requirement in market share
models. Second, we demonstrate how one could use the Johansen (1995) test, a system-
based test that is more appropriate given the dependencies in market share relationships,
to identify unit roots. This is implemented using Eviews software. Finally, we demon-
strate using Monte Carlo simulations that a unique feature of our procedure is that it
leads to better unit root inference and improves substantially on the univariate Dickey-
Fuller method.

The structure of our paper is as follows. Section 2 first shows that it is inconvenient to
test for unit roots in market shares by taking the market shares together in a multivariate
model, as one then has to take account of the summation restriction, which makes
subsequent analysis rather complicated. Next, it is argued that the MCI model implies that
one examines the unit root properties of the differences between the logs of market shares.
Additionally, this section demonstrates that when one knows the properties of these
variables, there are ways to derive the properties of all individual market shares. Section 3
deals with testing for unit roots within the context of the MCI model, and it elaborates on
the relevant application of the Johansen (1995) method. Specific attention will be paid to
the appropriate inclusion of the intercepts in the testing model. Section 4 contains Monte
Carlo simulations and empirical applications using data from two scanner product
categories. The simulations suggest that univariate unit root tests for individual market
shares are not very reliable. Section 5 presents the conclusions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TESTING FOR UNIT ROOTS 353

2. Unit Roots in Market Shares

We seek to develop a test for unit roots in individual market share series. We denote by M, ,
the market share series for / brands in a category, wherei = 1,2, ..., 7fandt = 1,2, ...,
n, such that Zl{zl M, , = 1 for all . The MCI model to be discussed below usually implies
the analysis of the market shares when these are transformed by applying the natural
logarithmic transformation, that is, log M;,. Notice that in other fields such as macro-
economics, it is the convention to follow the same procedure, where, for example, a unit
root in, say, GNP usually implies that one examines a unit root in the logs of GNP. Hence,
from now on we will consider the logs of market shares.

In assessing the long-run effects of marketing activity on shares, a necessary first step is
to determine which variables have unit roots and which variables do not, see for example
Banerjee, Dolado, Galbraith and Hendry (1993). A consequence of a time series variable
having a unit root is that the test statistics for parameter restrictions (such as f-ratios and
Wald tests) do not have asymptotic standard normal or y°> distributions. For further
discussion, we will sometimes call a variable with a unit root a variable that is integrated of
order 1 [I(1)], and a time series that is stable as a variable that is integrated of order 0 [I(0)].

Given that the market shares sum to unity, it is inappropriate to analyze the properties of
the market shares in separate individual models. Indeed, as the market shares sum to unity,
each of these models should then take account of this summation restriction. The same
argument holds for an analysis of the logs of the market shares. In the appendix to this
paper, we show that an approximate linearization results in

logM; , ~cp—my ,—...—m_1yr_i, ey

where c; is some constant, y; , denotes log M, ,—log M;,, and where the m, to m;_, denote
the values of the market shares at a particular point in time. Note that these values are
unlikely to be constant over time, due in part to the effects of temporary promotional
activity, and hence, at any point in time they may take different values. This equation is
already a prelude to a discussion below, where we will indicate that the properties of y;, are
informative for the properties of the individual log market shares. As it naturally holds that
my +my +---+m; = 1, the equation can also be written as

mylog M, , +myloghly .+ ... +m;logh;, ~c, 2)

for some constant ¢. Hence, the properties of the logs of the market shares are also
interdependent. For example, (2) indicates that it cannot occur that /— 1 log market shares
are stationary, while the /-th log market share is nonstationary. This is due to the well-
known result that the sum (or difference) of two /(0) series is also /(0), and the sum (or
difference) of an /(1) and an /(0) series is /(1). Equation (2) also tells us that the maximum
number of unit roots for the system with 7 log market shares is /—1, as it indicates the
presence of a long-term stable relationship between the 7 log market shares. Usually, such a
long-term relationship amongst potentially evolving variables is coined a cointegration
relationship.
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One may now think that a multivariate time series model for the /—1 (instead of /) logs
of market shares, thereby taking account for contemporaneous correlation, would perhaps
be useful. However, due to the restriction in (2), only in very specific cases can one then
derive the properties of the log market share that is left out. For example, in case of three
variables, suppose a unit root analysis of log M, and log M, , results in a stable linear
relationship. It may now be that this relationship has weights m; and m,. In that case, (2)
tells us that log M3, should be stable. However, if this is not the case, this variable should
have a unit root.

In sum, unit root analysis of the individual log market shares should be preferably
performed by considering other log market shares. This section further contains a
discussion of an MCI type model for the 7/ market shares, and it illustrates that this
model implies that the subsequent unit root analysis focuses on analyzing the differences
between pairs of logs of market shares. In the next subsection we will argue that the results
for these differences, and a few additional but straightforward computations, can lead to an
inference on the unit root properties of the individual log market shares.

2.1. Unit Roots in the MCI Model

The MCI model assumes that market shares are defined in terms of 7 unobserved positive

attraction variables 4;,, i = 1, 2, ..., I, that is,
o — A 3)
it — T .
Z':l Ajat

Given this definition, it is evident that each M;, lies between 0 and 1, and that the
summation-to-unity restriction holds. The notion that the attraction variables are unob-
served is important for the subsequent discussion, as a host of various specifications are
possible. These specifications all lead to different parameter restrictions concerning unit
root properties, as will become clear below.

When the focus is on the univariate analysis of each of the / market shares, a potentially
useful but simple specification of 4, is for example

A
A = exp(y; + 8i,t)]‘4i,t—1 > 4)

where the ¢;, variables are standard white noise variables, that is, they are uncorrelated over
time, with common mean 0 and variance-covariance matrix X. It is possible to restrict this
%, see for example Franses and Paap (1999), but for convenience no such restrictions are
imposed here.

For parameter estimation, it is usually convenient to consider the /—1 variables A; /
M, ,, thereby cancelling the common unobserved denominator Z{zl A; ;. Taking natural
logarithms on both sides then yields the 7—1 equations
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1Ogjui,t = .u;'k + 4 1Ozc:'jui,t—l + IOgMI,r -4 logM[,,_l + S;U (%)

fori = 1,2, ...,1—1, where u} equals u;— u; and &, equals ¢;,_¢;,. Notice that &}, is
again a white noise process, that is, ¢/, is uncorrelated with ¢/, , fork = 1,2, .... The
individual parameters y;, i = 1, 2, ..., I, are not identified, and the variance-covariance
matrix for ¢, is an unrestricted matrix >_* of dimension /— 1. Furthermore, note that the
parameter A; appears in each of the /— 1 equations. Due to all this, the parameters in (5)
should be estimated using an Iterative Seemingly Unrelated Regression [ISUR] technique
(which is available in for example Eviews 4.0), where the parameter for log M, is
restricted to be equal across the equations, see also Franses and Paap (1999). The resultant
estimates are the Maximum Likelihood estimates, and hence they are consistent and
efficient.

To examine the unit root properties of the 7 (log) market shares, where it is assumed that
each series can have at most a single unit root, one can focus on each equation separately,
while of course the parameters are jointly estimated using the ISUR method. By the
assumption of at most a single unit root, we rule out the possibility of explosive behavior
in market shares (which is likely to happen if there are two unit roots). Given the logical
consistency restrictions on the market shares, this seems a plausible assumption. Each of
the 7— 1 equations can now be viewed as one of the two equations of a bivariate system
containing log M; , and log M, ,, where the second equation for log M , is left unspecified
for the moment. For each pair of equations, one can distinguish four relevant cases. The
first is the case where A; = 1 and A; = 1. In that case, (5) reduces to

logl\l,-,, - 10gjui,t—l = /J‘;'k + logM[’, - lOgMI,t—l + S:t‘ (6)

Given that ¢, is white noise and that both variables appear in first-differenced form, it
trivially follows that log A;, and log M, cannot both be stationary. Put otherwise, each of
them may be integrated of order 1 [I(1)]. Clearly, when A; = 1 and A/ <1, log M; ,—log
M, ,_, is a function of a stationary variable, and hence the log M, , series itself is [I(1)].
Given that one can always choose a brand 7 as the benchmark brand (instead of brand 7),
the third case where A; = 1 and |A] <1 implies that log M, is I(1). Finally, the fourth
case, where |A;| < 1 and |A/ < 1, naturally implies that both (log) market shares are 1(0). In
sum, the values of the A; and A; parameters imply unit root properties of the corresponding
log market shares.

The above-sketched approach is rather problematic for at least two reasons. The first is
that there are cross-equation parameter restrictions. One consequence is that in case one
wants to examine all log market shares at the same time, one may end up testing for 0
versus / unit roots. This would require developing new asymptotic theory for the test
statistics, which is caused by the fact that the /—1 equation system corresponds with a
VAR(1) model for 7 log market shares with several specific parameter restrictions. In fact,
one then should resort to so-called panel unit root techniques, see Phillips and Moon
(1999).
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A second reason which makes the above approach difficult to use in practice is that there
are many possible ways to parameterize a function for the attractions, and hence that there
are many possible reduced form models. For example, suppose one wants to consider

2 2
A = exp(p; + & )M, (M, (7

for some brand j, that is, the attraction of each brand 7 also depends on that of a brand j,
then the 7—1 equations look rather different, and also other parameter restrictions than
those discussed earlier lead to unit root properties. Interestingly enough, it is not easy to
test which reduced form model is more adequate, as these tests and their asymptotic
distributions in turn depend again on the unit root properties of the individual variables.

In sum, a unit root analysis of a set of /—1 reduced form equations leads to serious
complications. As the attraction model naturally leads to an analysis of the variables log
M, ,—log M; ,, it seems perhaps most useful to start an empirical study with these variables.
To cover a wide variety of possible specifications, it seems most easy to start with an
unrestricted vector autoregression [VAR] for the 7— 1 differences between the log market
shares. In the next subsection we will discuss the consequences of taking this perspective.

2.2. Implied Properties for Individual Market Shares

In this subsection, we will argue that knowledge of the properties of log A, , —log M; , can
lead to insights into the unit root properties of the individual log market shares.

As any of the 7 brands can be the base-brand, (1) can be written such that any brand
appears on the left-hand side. For example, when / = 3, we have the three approximate

equations
logM, , ~ c¢; —m, logg—ii —my logﬁi: , ®)
log M, ~ c; — my log%—;:i —my log%, C)]
and
loght; , ~ c3 —my log%—;—mz log%, (10)

where of course the restriction holds that m;, 4+ m, +m; = 1. Hence, the unit root
properties of the log ratios of market shares imply unit root properties of the individual
log market shares.

From (2), one can deduce that if there are R stable relationships amongst the /—1
variables y;, to y;_1, there are R 4 1 such relationships amongst the log market shares.
This is because the (R + 1)-th stable relationship amongst the log market shares is simply
given by (2). Hence, when the entire system is stable, that is R = I—1, then all 7 log
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market shares are stable. Additionally, when R = 0, then all log ratios are I(1) and there is
no cointegration amongst these variables. Using (1) and (2), one can conclude that then all
log market shares are I(1), that is, have a unit root. When 0 <R </—1, one needs to add a
second step to the cointegration analysis, which involves tests for linear restrictions on the
cointegration parameters.

Perhaps this is all best illustrated using an example. Consider again the example with 3
brands, and take brand 3 as the benchmark brand. If there are two stable relationships in a
multivariate time series model for y, , and y, , then R = 2. Given (10), this implies that log
M, is stationary. As y; , equals log M; , minus log M;, for j = 1, 2, the two other log
market shares should also be stationary. Secondly, if there are no stable relations in the
bivariate system, that is, R = 0, then log M3, must be I(1) as well. Due to (2), log M ; and
log M, , cannot be 1(0) at the same time. Neither can only one of the log market shares be
I(1), due to either (8) or (9). For the intermediate case with R = 1, there are several
possibilities. If this cointegration relationship corresponds with the unity vector (10), then
Y1, 1s stationary. As y, ,is I(1), we can deduce from (10) that log M5, is I(1). As y,is 1(0),
this automatically implies that log M, should be I(1) too. For log A, however, it is
possible to be either I(1) or I(0). The only way to find out its properties is to take another
brand as the benchmark and repeat the analysis. Naturally, the value of R will not change
by doing so.

3. Testing for Unit Roots

In this section we provide some guidelines for testing for unit roots using the Johansen

(1995) method in unrestricted VAR models. We pay specific attention to the specification

of the testing model, as there may seem to be some confusion about its proper form.
Without loss of generality, consider the VAR(1) model

Y, =07, +e, (11)
for an (/—1) x 1 times series Y; containing y; , through y;_, ,, where ¢, is an (/—1) x 1
vector white noise series. For cointegration analysis it is convenient to write (11) in the so-
called equilibrium correction format, that is,

AY,=T1Y,_, +e, (12)
where I1 = ®, — E;_;, and where 6, denotes the first differencing operator, and where
E;_, denotes an /— 1-dimensional identity matrix. The matrix IT contains information on

cointegrating relations between the /—1 elements of Y,. In cointegration analysis it is
common to write (12) as

AY, =afY,  +e, (13)
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where o and f are (/—1)x R full rank matrices. When 0 <R </7—1, there are R
cointegrating relations between the /—1 variables, see Engle and Granger (1987) and
Johansen (1995).

The maximum likelihood cointegration test method, developed in Johansen (1988), tests
the rank of the matrix IT using the reduced rank regression technique based on canonical
correlations. For model (13) this amounts to calculating the canonical correlations between
A,Y, and Y,_;. This gives the eigenvalues 4, >---> 4,_; and the corresponding
eigenvectors f, ..., f;_,. A reliable test for the rank of I1 is the likelihood ratio [LR]
test statistic O

I-1
Q=-nY log(1-1). (14)

i=R+1

The null hypothesis is that there are at most R cointegration relations. Asymptotic theory
for Q is given in Johansen (1995), and the critical values for this Q for model (13) are
given in Table 15.1 in Johansen (1995). Additionally, the procedure gives standard errors
around the parameters f§ and these can be used to see if there are unity vectors amongst
Br.--s B

Notice that the model in (13) assumes that the /—1 time series do not have a trend, and
that the cointegrating relations 'Y, have zero equilibrium values. This may however not be
a reasonable assumption for differences across log market shares or for the log market
shares themselves. Hence, it seems relevant to expand (13) by somehow incorporating an
intercept and trend in the VAR model. This expansion should be such that the data display
the same kind of behavior under the various hypotheses.

There are now two cases which are most relevant in practice. The first case concerns the
case where none of the /—1 time series seems to display a deterministic trend. First, the
restriction that the cointegrating relations §Y, in (13) all have an equilibrium value which
is exactly equal to zero does not seem plausible. Hence, it is more appropriate to extend
(13) as follows, that is,

AY, = a(fY, oy — ) +e, (15)

This representation also implies that in case there are no cointegrating relations, the data
do not have a trend.

To compute the LR statistic, one should now calculate the canonical correlations
between A, Y, and (¥,_, 1)’. The relevant asymptotic theory is given in Johansen (1995).
The critical values of the corresponding LR test appear in Table 15.2 in Johansen (1995).
Notice that this case corresponds with Option 2 in the relevant routine in EViews.

The second case concerns the case when (some or all) series display trending patterns.
One then should consider

A Y, =y +a(BY, g — py — 610) +e, (16)

This model allows the individual time series to have trends by not restricting y, to zero,
while the cointegrating relations attain their equilibrium values at y; + 6,¢. In very special
cases, all parameters in §; may equal 0, but it is safe not to assume this beforehand.
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To compute the LR statistic, one should calculate the canonical correlations between
demeaned first differenced series and demeaned (Y,_;, £)’. The relevant asymptotic theory
is again given in Johansen (1995). The critical values of the LR test appear in Table 15.4 in
Johansen (1995). This second case corresponds with Option 4 in the relevant routine in
EViews.

In case one a priori assumes that 6, = 0 in (16), one implicitly assumes that there are
links between the deterministic growth patterns across the /— 1 individual time series. This
assumption has an impact on the value of the LR test statistic and on its asymptotic
distribution. The relevant theory is given in Johansen (1995), and the critical values appear
in Table 15.3 in Johansen (1995). This case corresponds with (the default) Option 3 in
EViews. However, as mentioned above, the assumption that ; = 0 may not be a sensible
assumption for many economic data, and also it is difficult to test without having precise
knowledge of the number of cointegrating relations.

Finally, when the VAR model order is in excess of 1, the above calculations need to be
adjusted by also considering regressions of the first-differenced variables. The main
practical issue is of course the specification of the lag order of this VAR. A commonly
applied procedure involves the use of a model selection criterion, such as AIC or BIC,
together with diagnostic tests for residual autocorrelation.

4. Empirical Illustrations

In this section the method proposed in the previous section is considered in a simulation
experiment and it is applied to two sets of market shares.

4.1. Monte Carlo Simulations

To see whether our procedure yields useful inference, in contrast to a straightforward
application of the Dickey-Fuller test to each of the market share series, consider the
following data generating process, that is,

log4,, =05 logd, ,_; +¢, (17)
logd,, =logA4,, | + &, (18)
log4,, +logAs;, = 0.5(log4,,_; +logd;, 1)+ &5, (19)

where the ¢;, series, i = 1, 2, 3, are mutually independent standard white noise series.
From this, we calculate logM;, = log4;, —log> 3} | 4;, and y,, = logM;, — logM,,
=logA;, —log4, ,. It easily follows that y,, and y;, are both I(1), and that they are
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cointegrated with cointegrating vector (11) Hence, log M, , is 1(0), whereas log M, , and
log M; , are I(1). The rank R is therefore equal to 1.

First, we consider the familiar Dickey and Fuller (1981) test procedure, where we use
the F-version by testing the joint significance of the lagged level and the intercept. We
use the 5% significance level for this and our test. Some experimentation suggests that
four lagged difference need to be included. When we rely on 1000 replications, we find
that for a sample size of 100 observations, the test correctly indicates that log M, , is 1(0)
in only 31% of the cases, and that log M, , and log M5, are I(1) in 91% and 91% of the
cases, respectively. When we increase the sample size to 500 data points, these
percentages become 27%, 88% and 87%, respectively. Hence the Dickey-Fuller test
does not seem to be very reliable, and worse, its performance deteriorates for larger
samples.

Next, we consider our procedure based on the log ratios. For the present data generating
process, we should find that R = 1. Again, we use 1000 replications. For the sample size
of 100, we find that R is estimated to equal 1 in 57% of the cases, while it is 0 and 2 in 38%
and 5% of the cases, respectively. When we increase the sample size to 500, these
percentages become 0%, 95% and 5%. Hence, our procedure works quite well and seems
to improve substantially on the univariate Dickey-Fuller procedure.

4.2. Two Real-life Data Sets

We now apply our method to two FMCG scanner data sets for illustrative purposes. These
sets concern four brands in the ketchup category. The same data have been analyzed in
several marketing research studies, see Srinivasan and Bass (2000) for references. As none
of the log market shares seem to display a deterministic trend, we consider the test equation
as in (15). We experimented with the second test regression, but found no salient
differences in the outcomes. We also have results for many other sets of data, but the
two considered here suffice for illustrative purposes.

For the first set, we use A.C. Nielsen weekly scanner data for the period 1986—1988
(n = 104) for the ketchup category. The four brands are Heinz, Hunts, Del Monte and a
rest category. This rest category is taken as the base-brand. We consider a VAR model for
the three variables measuring the differences between the log market shares. Model
selection criteria and diagnostic tests suggest that a VAR model with first order dynamics
suffices to describe the data. The LR test statistics for R = 0 versus R >0, R = 1 versus
R>1,and R = 2 versus R > 2 take the values 96.07, 46.49 and 17.28, respectively, and
these should be compared with the 5% critical values 34.91, 19.96 and 9.24, respectively.
The three null hypotheses get rejected convincingly, and hence given that R = 3, it can be
concluded that the four market shares in the ketchup category are all stationary at the 5%
significance level.

The second set of market shares are A.C. Nielsen store movement data, and they
concern the same brands of the same product category as in the first set, although now the
sample concerns 104 observations for the years 1992 to 1994. Again, we take the rest
category as the base-brand. The residual diagnostics and model selection criteria indicate
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that a first order VAR can be considered for the three log ratios of market shares. The LR
test statistics for R = O versus R>0, R = 1 versus R> 1, and R = 2 versus R > 2 take
the values 101.33, 56.23 and 18.52, respectively, and these should again be compared with
the 5% critical values 34.91, 19.96 and 9.24, respectively. Hence, the four market shares
are found to be stationary at the 5% significance level.

5. Concluding Remarks

In this paper, we proposed a new testing procedure for diagnosing stationarity versus
evolution in market shares within the context of a market share attraction [MCI] model,
accommodating the logical consistency constraint that market shares lie between 0 and 1
and that they sum to unity. In testing for unit roots, care must be exercised to take account
of the fact that the market shares of brands within a single product category are related. An
important conclusion from our paper is that one should consider the differences of the log
market shares with a base-brand first, and next, one should derive the properties of
individual log market shares. Simulation results suggest that our procedure is more useful
than the univariate Dickey-Fuller method.

There are limitations, however. First, while we considered univariate log market shares
in an MCI model, the case of relating evolving brands with explanatory variables is more
complicated, as it may include many more statistical decisions. Second, in order to
enable parameter estimation, the model assumed a transformation of market shares to log
market shares. A question that arises is what can one infer about the properties of levels
of the market shares based on these tests. This is not a trivial matter, as it is unclear if
exponential functions of I(0) or I(1) variables are again I(0) and I(1), see Park and
Phillips (1999). Third, the unit root testing methodology we proposed did not explicitly
take into account structural breaks in market shares. Future research should address
extensions to the unit root tests accommodating structural breaks within the MCI
framework.

Limitations aside, an important managerial issue that has been increasingly addressed in
research in marketing is the long-term share and sales impact of manufacturers’ marketing
actions. Our paper proposes a new approach for testing for unit roots in market shares and
can help researchers in this important area.

Appendix

Let (M, i=1,...,I,t=1,..., T} denote time series of market shares of / brands at
time ¢, such that M;, > 0 and Zl{zl M;, = 1. The attraction model is given by
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where 4;, > 0, and (log 4, ,, ..., log4; ) follows a vector time series process. It is useful
to consider the /—1 relative log-market shares {y;,,i =1, ..., — 1} defined by

M, A;
=log—f =log=L = logd;, —log4;,,

Mu Ary
so that a linear vector time series process for (log 4, ;, . ..,log4; ) implies a linear vector
time series process for y, = (v, ..., ¥;_1,.)- The choice of brand I as the benchmark is

arbitrary and irrelevant: any other choice of the benchmark leads to a vector of log-market
shares which is a simple linear transformation of y,.
The inverse transformation from y;t to M, follows from M;, = exp(y; )M, and

My, = (1 -y Mi,,), so that

1 _Ml,r sz llM <
W, =2 exp0,),

and hence

1
1+ Zl—l exp(yl t)

M, =

€X]
M,t p(.ylt) =1,...,

1+ Zl—l eXp(yl t)

This shows that the (/— 1)-vector y, fully determines the /-vector of market shares.

Let m, , = log M, ,. From the previous analysis it follows that m, = (m, ;, ..., m;,) is a
non-linear transformation of the linear time series process y;. A first-order Taylor series
approximation may yield some indication of the time series behaviour of m;,, especially
with respect to the stationarity or non-stationarity of m,,t. The matrix of derivatives G(y;) of
the function m(y,) contains

o
Gg(m—ﬁ— =M, i=1,....1, j=1,...,i-1i+1,....I-1,
],t
Gll(.yt)_ay _1_Mi,t7 i=1,...,1—1.
it
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Therefore, a linearization of m(y,) in a point y, corresponding to log-market shares

m=logM, is
-1 B
mi,t%rhi-’_yi,t_j)i_zj‘lj()/}‘,t_.)_/j’)7 i=17“‘71_17
=

-1
my N myp — Z]W]Oﬁt =¥
=

If we take y = 0, such that M; = 1/, then this simplifies to

11—1 '
m"’f%_lOg["‘yit_nyj,n i=1,...,1—1,
j=1

=
m;, ~ —logl — TZy]t
Jj=1

In both cases it is quite easy to see that Zle Mimi,, A constant.
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